C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name : Advanced Calculus

Subject Code: 4SC03MTC1		Branch: B.Sc.(Mathematics)	
Semester : 3	Date : 23/03/2017	Time : 10:30 To 01:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Atten	a) b) c) d) e) f) g) h) npt any f	Attempt the following questions: Find asymptotes of the curve $x^2y^2 = a^2(x^2 + y^2)$. parallel to co ordinate axis.11 Find interval on which the function $x^3 - x - 5$ is increasing or decreasing. Verify Euler's theorem for $u = x^2 + 2axy + y^2$. If $x = r \cos \theta$, $y = r \sin \theta$ then what is the value of $\frac{\partial(x,y)}{\partial(r,\theta)}$? If $x^4 + y^4 = 4b^2xy$, find $\frac{dy}{dx}$. Prove that $\beta(m, n) = \beta(m, n + 1) + \beta(m + 1, n)$. Is the function $f(x, y) = \sin(\frac{x-y}{x+y})$ homogeneous? Write the relation between Beta and Gama function. Four questions from Q-2 to Q-8	 (14) (02) (02) (02) (02) (02) (02) (01) (01)
Q-2		Attempt all questions	(14)
	a)	State and prove Taylor's theorem for the function of two variables.	(08)
	b)	Find extreme value of $f(x, y) = x^2 + 2y^2 - x$.	(06)
Q-3		Attempt all questions	(14)
	a)	State and prove Duplication formula.	(08)
	b)	Evaluate: $\int_0^1 x^m \left(\log \frac{1}{x}\right)^n dx.$	(06)
Q-4		Attempt all questions	(14)
	a)	If $u = x + y + z$, $uv = y + z$, $uvw = z$ then prove that $\frac{\partial(u,v,w)}{\partial(x,y,z)} \frac{\partial(x,y,z)}{\partial(u,v,w)} = 1$.	(08)
	b)	If $u = \log(\tan x + \tan y + \tan z)$ then prove that: $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2.$	(06)

Q-5	a)	Attempt all questions Using definition of limit prove that $\lim_{(x,y)\to(2,4)} x^2 + 5y = 24$.	(14) (05)
	b)	a) If u is a homogeneous function of degree n then prove that	(05)
		$x^{2}\frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2}\frac{\partial^{2} u}{\partial y^{2}} = n (n-1) u.$	
	c)	If $u(x, y) = \log(\frac{x^2 + y^2}{xy})$ then check whether $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ holds.	(04)
Q-6	a)	Attempt all questions State and prove Euler's theorem for homogeneous function of two variables.	(14) (05)
	b)	Prove that $y = x + 2$ is an asymptote of the curve $y = \frac{x^2 + 2x - 1}{x}$.	(05)
	c)	If $u = \tan^{-1}(\frac{y^2}{x})$ find value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.	(04)
Q-7	a)	Attempt all questions Expand $e^x \sin y$ in powers of x and y up to three degree.	(14) (05)
	b)	Find the maximum value of $f(x, y, z) = xyz$ subject to the constraint $2x + 2y + z = 108$ using Lagrange's method of undetermined multipliers	(05)
	c)	Prove that $\Gamma n = \int_0^1 (\log \frac{1}{x})^{n-1} dx.$	(04)
Q-8		Attempt all questions	(14)
	a)	Find range of values of x for which the curve $y = x^4 - 6x^3 + 12x^2 + 5x + 7$ is concave upward and downward. Also find points of inflection in each case	(05)
	b)	Find all asymptotes of the curve $x^3 + y^3 - 3axy = 0$.	(05)

c) Evaluate:
$$\int_0^1 \frac{1}{\sqrt{1-x^6}} dx.$$
 (04)

